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DAMPING CONFIGURATIONS THAT HAVE A STABILIZING
INFLUENCE ON NONCONSERVATIVE SYSTEMS

G. T, S. DoNE

University of Edinburgh, Edinburgh, Scotland

Abstract-A particular damping configuration which always has a stabilizing influence on a nonconservative
system is studied. It is seen that for very small damping the critical value of the chief parameter for incipient
flutter tends to that of the undamped system.

In the simplest case of two degrees of freedom a range of stabilizing damping configurations is sought.
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inertia matrix
(r22- r ll)P=Pc

damping matrices
coefficient of damping matrix
(r12 +r 21 )p=pc

stiffness matrices
coefficient of stiffness matrix
polynomials in A
unit matrix
positive scalar
number of degrees of freedom
polynomial coefficient in characteristic equation
chief parameter
critical value of P for incipient flutter of the undamped system
vector of generalized co-ordinates
vector of generalized forces
time
Routh's test function for incipient flutter
number of rows of s, b, c involved in a determinantal expansion
airspeed
coefficient in reduced stiffness matrix
denotes small order
positive scalar that can be made small
coefficient in reduced damping matrix
deviation ofT;) from that given by (41)
complex variable
ith eigenvalue
A./(cll +C22)t
TI2/TUT22 where T12 = T21
that part of Pi dependent on damping coefficients to the jth power
component of q independent of t
ith eigenvector

1. INTRODUCTION

MANY stability studies of nonconservative systems have undoubtedly been initiated by the
paper of Zeigler [1], in which the paradoxical destabilizing effect of damping is demon­
strated. The type of system generally considered in these studies is a linear mechanical one
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subjected to nonconservative forces of the circulatory category (to use Zeigler's nomen­
clature [2]) which are monotonically dependent on one or more chief parameters.
Depending on the problem a typical chief parameter could be either the magnitude of a
follower force applied to the system structure, or the flow velocity in an elastic pipe con­
veying fluid, or the airspeed in an aerolastic problem. The fundamental property of the
nonconservative system of this type is that at some critical value or values of the chief
parameter or parameters the system becomes incipiently unstable, the instability being an
oscillatory one and commonly referred to as flutter. As a result of the work by Zeigler [IJ
and other investigators (see the bibliography in Herrmann [3J) it is now well known that
the lowest critical value of the chief parameter for flutter is generally reduced by the intro­
duction of a small amount of damping into the otherwise undamped system. In this sense
the added damping is destabilizing although the rate of growth of the divergent oscillations
may be only of the same order of smallness of that of the damping [4].

The tendency in some of the literature to concentrate on the unusual and interesting
destabilizing phenomenon e.g. [4-7J is such that it is easy to fall into the way of thinking
that introducing small damping into a nonconservative system always brings about a loss
of stability. This is not the case and examples may be found as testimony. Bolotin [8, p. 81J
studied a two degree of freedom system in which the damping coefficients corresponding to
appropriately transformed equations of motion could be made equal and demonstrated
that in this case vanishingly small damping was not destabilizing. The same result applied
for a system having equal eigenvalues; indeed, it was concluded for this that small but
finite damping was strictly stabilizing.

As part of his investigation into the dynamics of tubular cantilevers Paidoussis [9J
varied the structural and fluid generated damping; although some configurations of
cantilever showed small damping to be destabilizing, others indicated the opposite effect.
The dependence of the tendency to stabilize or not on the configuration of the basic struc­
ture was recognized in an early paper by Frazer [IOJ who studied the power input required
to maintain forced oscillations of an elastic aeroplane wing in flight. He found conditions
that applied to the system inertias such that the rate of change of the critical airspeed for
flutter with increasing damping would be either positive or negative. Experiments were
carried out with a small model wing in a wind-tunnel which provided limited but ample
confirmation of the theory.

It is with the purpose of redressing the balance towards the point of view that the
damping may be stabilizing in certain situations that this paper is written. Subsequent to
the establishment of useful general relationships, a particular combination of damping
coefficients embodied in matrix form (referred to here as a configuration of damping) that
has the property of always being stabilizing is studied and in the following section a greater
range of stabilizing configurations is sought.

2. GENERAL RELATIONSHIPS

The systems considered are assumed linear and scleronomic and the non-dissipative
nonconservative forces are circulatory and dependent on one chief parameter only. The
damping forces are velocity dependent.

The equations of motion in the undamped cases are

aq +c(P)q = Q(t) (1)
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where a is an inertia matrix, c is a stiffness matrix in which the elements are functions of
P, the chief parameter, q are generalized co-ordinates and Q(t) are the time dependent
generalized forces. The solution q = <I> eAt, where A may be complex, applied to the
homogeneous equations provides the characteristic equation in determinantal form

laA2+c(P)1 = 0

which may be expanded to give in polynomial form

F1 (A 2,P) = P2.A2'+P2._2A2.-2+",+P2A2+po = 0

(2)

(3)

where n is the number of degrees of freedom present. The coefficients Pi are functions of P
(except for P2.) and A appears only in even powers in the equation. The condition of in­
cipient oscillatory instability is given by the coalescence of two conjugate pairs of A-roots
in the complex plane, which in turn derives from the coalescence of a real pair of A2_rootS.

This happens when

F2(A2, P) = OFt(A
2, P)/OA2

(4)

which is a particular case of the general statement by Bolotin and Zhinzher [12, p. 969].
We now consider the introduction of damping in the form Gb(P)q into the equations of

motion; the elements of b may vary with P whilst the positive scalar I' can be made arbi­
trarily small. The determinantal form of the characteristic equation is

laA2+ Gb(P)A + c(P)1 = 0

and the associated polynomial form is

P~.A2.+ P~._lA2.-t + P~._2A2.- 2+ ... + P~A2 + ptA+ P6 = 0

(5)

(6)

(7)

where the asterisk indicates a change in a coefficient Pi at any given P due to the intro­
duction of the damping. The new coefficients can be expressed as polynomials in 1', but to
do this we must examine their formation from the elements of a, band c. A particular Pi is
given by the summation of determinants formed from, say, u rows of a, v rows of band
w rows of c in such a manner that the conditions

u+v+w = n}

2u+v = i

are satisfied. Clearly, for some values of i several combinations of the integers u, v and w
are possible and all possible combinations are used in the summation.

The number of rows of b and hence the power to which the scalar appears in a com­
bination is v which from (7) is

v = 2n-i-2w. (8)

The possible values of v for a given i are found by allowing w to vary, subject to the con­
straints v ~ 0, w ~ O. We can deduce from (8) that v is even if i is even, and it is odd if i is
odd, and that the maximum value for v is 2n- i. Thus

pt = Pi+O'i2G2+···+O'i,2._iG2.-i(ieven)

pt = O'i1 G+O'i3G3 + .. '+O'i,2._iG2.- i(i odd)

where the coefficients O'ij are functions of P.

(9)

(10)
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The addition of damping, whilst making the characteristic equation more complicated
allows the condition for incipient oscillatory instability to be stated more simply than in the
undamped case since the real parts of the exponents are negative in the stable range of P
but at least one is positive in the unstable range. Impending flutter is indicated when the
appropriate real part is zero i.e. tl is purely imaginary. This allows an easy division into
real and imaginary parts of (6) so that for incipient flutter

n(tlz,p) = P~ntlZn+P~n_ztlZn-Z+ ...p~tlz+p~ 0 (11)

F~(tlz,P) = P~n_ltlzn-Z+ ...p~tlz+p! = 0 (12)

where tl is taken to be non-zero. Equations (11) and (12) can be rearranged to eliminate tlz

and all its powers to produce in the damped case the familiar Hurwitz determinantal form
of the (2n-l)th Routh test function for oscillatory instability. The equivalent expansion
of Collar (see [11]) for the undamped case is similarly formed from equations (3) and (4)
to produce

npZn (n-l)Pzn-Z (n-2)PZn-4

PZn

o
o

PZn-2

P2n

PZ n -4

(n-l)P2n-Z

PZn-Z

2P4 PZ 0

P4 PZ Po

3P6 2P4 PZ

= o. (13)

3. NON-DESTABILIZING SMALL DAMPING CONFIGURATION

We now consider the damping to be very small so that the second and higher order
terms in e in (9) and (10) may be neglected. Then, for i even, pr -. Pi implying that
F!(tl z, P) -. F1(tlz, P) and for i odd, pr -. eail . For the critical value of the chief parameter
to remain unchanged when damping is introduced into the initially undamped system the
conditions represented by (3), (4), (11) and (12) must hold simultaneously; with small
damping the reduced set of conditions is

(14)

Damping terms appear only in F! and the problem is to find a configuration of b such
that F~(,1?, P) = 0 is satisfied at the appropriate critical values of tlz and P. The damping
matrix contains nZ potentially variable parameters and thus in the absence of sufficient
constraining relations, there is an infinity of possible configurations for b that satisfies (14).

One configuration that is acceptable is that for which the damping matrix is pro­
portional to the inertia matrix i.e. b = k(P)a where k(P) is a positive scalar that may be
dependent on P. This configuration encompasses that of Bolotin previously referred to
and also was used by Done [13] as a means of acquiring insight into certain aircraft flutter
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problems. The determinantal form of the characteristic equation is in this case

la..1. 2 + k(P)a..1. +c(P)1 = o. (15)

The coefficients pr of the polynomial form of the characteristic equation do not now
contain any elements of b, and it is possible to express the coefficients in terms of those of
the undamped system. Denoting, as before, the integers u, v and w for the number of rows
of a, band c involved in any determinantal expansion, subject to conditions (7), we observe
that in the undamped system v = 0 so that 2u = i and each polynomial coefficient Pi = P2.
is determined by summations having unique numbers of rows of a and c. In obtaining the
polynomial form of (15) we replace v rows of b by v rows of a in each determinant formation
so that associated with coefficients pr in the damped system are coefficients Pi+v in the
undamped case. However, the evaluation of a particular determinant may be repeated, as
when the v rows of b are replaced by rows from a, the combination of rows of a and c may
appear several times. The number of times is equal to the number of different orders that
can be found for two sets of u and v rows Le. (u +v) !/u!v! Also, the power of <: and k(P) is
equal to the number of rows of b that were originally in a determinant formation. Thus,
we can write

:,,*=,(U+v)! VkV(P)
P, L. I' <: P.+v

v U.V.
(16)

(17)

where pf* refers to the system with the damping matrix proportional to the inertia matrix
and the summation is over all possible values of v subject to conditions (7) and u, v and w
remaining non-negative. A coefficient of the type appearing in (9) and (10) becomes

( 1'+1 )1
** _ 2

1
2

V
. k(P)V

aiv - (1'_1 )1 1 Pi+v
21 2V .V •

where i and v are either both odd or both even.
The case of damping made so small that terms involving second and higher order in <:

in (9) and (10) may be neglected is given by making v = 1. Then from (10) and (17)

pf* = <:aii* = t(i+l)<:k(P)pi+1

for odd i, and this allows (12) to be written

(18)

= <:k(P){np2"A2"-2+(n-l)p2"_2..1.2"-4+ ...2P4..1.2+P2} = O. (19)

Apart from the scalar <:k(P) this function is the same as that for the undamped system
F2(..1. 2 , P) in (4) and thus (14) is automatically satisfied at all times. Therefore, the intro­
duction of a vanishingly small amount of damping in the form b = <:k(P)a does not change
the critical value of the chief parameter.

The corresponding test function for oscillatory instability can be shown to be

(20)

where T2"_-1 is the test function given in (13) for the undamped system.
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In order to examine the form of the eigenvalues (15) may be written for the ith eigen­
value

laAr*2 +k(P)a,,-r* +c(P)J = 0

in which the damping is not necessarily small and /; is omitted.
The ith eigenvalue in the undamped system satisfies

la,,-? +c(P)1 = 0

and satisfaction of both (21) and (22) at the same value of P is ensured if

Ar*2+k(p),,-r* = A?

for each set of eigenvalues. This is a simple relationship which leads to

2:"* = _ k(P) + j[(k(P») 2+ '2J
I 2 - 2 A"

(21)

(22)

(23)

(24)

Assuming that the first instability encountered as P is increased is not a "static" one, the
situation is as shown in Fig. 1. Curves (a) are the root loci of Ai in the upper half of the

(a)

1m
I

/
(c)

Indicates
direction of
increasing P

Re

FIG. 1. The effect on the root loci of introducing a damping matrix proportional to the inertia matrix.

complex plane. The critical value, PC' of P for oscillatory instability is that for coalescence
of the roots. The effect of the term (k(P)/2)2 under the radical in (24) is to modify the loci,
but not to destroy the symmetry about the imaginary axis, as in curves (b). The effect of
the term - k(P)/2 before the radical is to provide an overall shift into the right-hand or
stable half-plane as shown by curves (c). At the critical value Pc of the undamped system,
the corresponding root of the damped system has a negative real part - k(Pcl/2 from (24);
therefore finite damping introduced in the form b = k(P)a is always stabilizing.

The eigenvectors «1>; and «I>t* satisfy respectively

[aA? + c(P)]«I>j = 0
[aAr*2+k(p)a,,-r*+c(p)]«I>t* = o.

(25)

(26)
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But from (23), (26) can be written

[a2f+c(P)JDj* = 0 (27)

so that cDr * = cDi . The damped system eigenvectors are therefore the same as those of the
undamped system which are real for P ~ Pc and complex for P > Pc provided at least
one pair of eigenvalues remains complex.

An example of the stabilizing shift given to the eigenvalues is shown in Fig. 2. The
system has four degrees of freedom and is taken from an aircraft wing aeroelastic flutter
problem with the damping coefficients made proportional to the inertia coefficients. The
numerical details appear in Ref. [11] with k(P) = PS/4P7' The chief parameter is airspeed
on which the scalar k(P) is linearly dependent for consistency with the nature of the
naturally occurring aerodynamic damping. It is seen that the first instability occurring as
the scaled airspeed V is increased is completely suppressed, and a second occurs at a
higher value of V.

Simple expressions for the modal frequencies and rates of decay can be obtained in
the binary case, and these may be found in Ref. [13].
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FIG. 2. Aircraft flutter roots for a case in which the damping matrix is proportional to the inertia matrix.

4. STABILIZING DAMPING FOR A TWO DEGREE OF FREEDOM SYSTEM

By concentrating attention on a system having only two degrees of freedom and of
therefore limited complexity we can extend the search for stabilizing configurations of
damping beyond that studied in the previous section.

The determinantal form of the characteristic equation may be written

1

22+b112+Cll b122+C121 = 0 (28)

b21 2+C21 22 +b222+c22
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in which we let a = I without loss of generality. The coefficients bij and cij may be functions
of P.

This can be further reduced to

I

A2 +2'l1 A + r ll

2'21 A + r 21
(29)

where A = A./(c 11 + c22 )"!, 'ij = bij/(c 11 + c22)t, and rij = cij/(c11 + c22)t. A coefficient 'ij
is comparable to the "damping ratio" ofa single degree offreedom system and r11 +r22 = 1.
Expansion of the determinant into the polynomial form of the characteristic equation
provides in the notation of (9) and (l0)

where

P4 = P2 = 1

Po = r11r22-r12r21

I;(T31 = 2('11 +'22)

£20"22 = 4('11'22 -'12'2d

£0"11 = 2('l1 r 22+'22r 11-'12r 21-'21 r 12)'

Flutter impends when Routh's third test function is zero

n = p~pip! - p!pi* - P~2p6 = o.

(30)

(31)

If damping is introduced in such a way that the critical value of the chief parameter, Pc,
for incipient flutter remains unchanged then the equivalent of (31) for the undamped
system

(32)

(33)

(34)

is also satisfied [from (13)].
Now, by scaling T~ appropriately it can be expressed in a form that contains the

elements of T3 [14], i.e.

T* _ 2 2 {!i+£20"110"22 (~_l2-}2}
3 - £ 0"31 2 P4 .

4P4 0"31 0"31 2P4

Thus, for (31) and (32) to be satisfied simultaneously

{
£20"110"22 P4(~_~)2} = 0

0"31 0"31 2P4 P=Pc

and configurations of damping which when introduced into an initially undamped system
do not alter the critical value of the chief parameter must satisfy this equation. Com­
prising a configuration are four independent damping parameters, '11' '12' '21 and,22 ;
in order to avoid undue complication and so that the regions of instability can be readily
illustrated we make,12 = '21' This would be the case anyway with damping that is purely
structural in origin, although it would not necessarily apply in the aeroelastic flutter situ­
ation, for instance. The main independent parameters in (34) not concerned with damping
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are then (r22 - r 11 )p=p
c

= A and (r12 +r21 )p=p
c

= B, the first representing the modal
frequency separation at P = Pc and the second a measure of the coupling effect between
the two degrees of freedom. It is assumed that divergence instability does not occur at a
value of P lower than that for flutter, so that r11r22 - r12r21 > O. It is also assumed that
r 11 and r 22 are positive and that the dissipation function remains positive definite so that
r 11 r 22 -ri2 > 0; by replacing r 12 by Jl.J(r 11 r 22) where -1 < Jl < 1 we automatically
satisfy this condition.

Equation (34) may be re-written in terms of the newly defined parameters and it then
takes the form

8(1- Jl2)r 11 r 22(r 11 + r d [(r 11 + r 22)+A(r 11 - r22) - 2BJl.J(r11 r 22)]

- [A(r11-rd-2BJl.J(rllrd]2 = 0 (35)

from which some useful observations may be made. The two terms always have opposing
signs (eO" II and hence the expression in square brackets is positive in the first term) and on
looking back to (33) are seen to have opposing actions on the stability. Since T~ > 0 in
the stable region, the first term in (35) is stabilizing and the second is destabilizing. The
effect of putting the damping matrix proportional to the inertia matrix is to make
(r 11 - r 22 ) = r 12 = 0 in (35). The second term vanishes and thus the configuration of
damping is a stable one. However, this is only one configuration of many that cause the
final term to disappear; by equating the term to zero it can be shown that any damping
satisfying

r22 (Jl2+A 2/B2)t-Jl

r 11 {Jl2+A 2/B2)t+ Jl

is stabilizing. The combinations of values of r 11' r 22 and Jl which are either stabilizing or
destabilizing when introduced into an undamped system at P = Pc are found from (35)
and shown in Fig. 3 for A = B = 0-4. The wedge shaped region of stability that appears

IA=04!8=04

FIG. 3. Stability diagram for two degree of freedom system.
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for small values of damping follows the slope defined by (36). The same picture may also
be used to describe other combinations of the parameters, for if we let f(, 11' '22' A, B, f.1)
be the function on the left-hand side of (35), it is readily seen that f('11"22,A,B,f.1)

=f('22"11' -A,B,f.1) f('11"22,A, -B, -f.1).
The variations of the stability regions with A and B whilst f.1 is kept constant are shown

in Figs. 4 and 5, respectively. The first case is interesting in that the slope of the "wedge"
tends to zero as A becomes smaller but at A 0, it disappears altogether. This is because
the means of nulling the destabilizing term in (35) is removed and a completely unstable
region exists for all small, II and,22' The case of A = 0 corresponds to a system for which
the uncoupled modal frequencies coalesce at the undamped critical flutter speed. This
occurs only when r l2r 21 = 0 (see [l1J) but the possibility of B = r 12 +r21 #- 0 still exists;
one of the cross-dampings '12 or '21 combines with one of the cross-stiffnesses r 21 or r 12

to produce the destabilizing influence. The point along either axis at which the stability
region begins is given by setting A = 0 in (35) and then letting 'li O. This provides for

0·8

~ Unstable side
!J- =004
B =0,8

0'6

A

004

08
004
0·2

0·1
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\-._~--::'" stability
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..
..."

/ A
0·04

~Upper and lower / 0·8..
..." stability bounds

0'02 \
004

0·2

0 0·2 0-4 0·6 0·8 1·0

Til

FIG. 4. Effect of varying A.
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-0-4 004 -8

-0'8~ 0 0·8
1·0
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fL =0'4

0,8

0'6

N
N..

FIG. 5. Effect of varying B.

the other damping coefficient

(37)

As the cross-damping coefficients are made smaller (i.e. Jl. is reduced) the region of in­
stability also becomes less.

Figure 4 also shows a point common to the stability boundaries for varying A. This
occurs when TIl = T22 in (35) for then the equation is independent of A. Using the case
A = 0 for simplicity it may be shown that the common point is given when

(38)

In the example illustrated in Fig. 5 the regions of stability become thinner as B is
increased and the wedge slope changes, but the basic shape characteristics remain. Curves
similar to those in Figs. 4 and 5 were given in Salaun [15] for a system having no inertia
or damping cross-coupling terms.

The generality of the damping configuration considered prevents explicit expressions
for the modal frequencies and rates of decay from being obtained, except in the case of
small damping which allows approximations to be made. Such expressions are found in
Ref. [13] and graphical examples are given to show the various ways in which stability can
be affected by damping.

The possible deviation of damping configurations away from the one given by (36)
that maintain stability can be studied using (35) for the case of small damping. If we let the
order of magnitude of a Tij be denoted by e and that of its deviation be b, then in (35) the
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first term is of order e4 and the second IV Thus, the order of {) is e2 , and a stabilizing
damping configuration has damping coefficients 'ij+eIJij where IJij and 'ij are both of
order e. The wedge-shaped stability region seen in Figs. 3-5 therefore virtually collapses
onto the line defined by (36) for very small values of damping.

5. DISCUSSION

The introduction into an initially undamped nonconservative system of small damping
is usually destabilizing. However, it has been shown that certain configurations of damping
or damping matrix have a stabilizing influence. The case in which the damping matrix is
proportional to the inertia matrix is one such example, and is relatively amenable to
analysis. It is seen that the effect of the damping on the root loci is to impose an overall
shift into the stable or right-hand half of the complex plane, which results in the system
having a stable root where previously it had an incipiently unstable root. The eigenvectors
at the same values of the chief parameter are left unchanged, which means that at the new
point of instability the eigenvector associated with the flutter root is complex. When the
damping is made very small the system tends towards the undamped system in its most
important aspect, that of the critical value of the chief parameter for oscillatory instability.
This is demonstrated by the appropriate Routh's test function tending to that of the
undamped system.

In the two degree of freedom case the algebra is sufficiently simple to allow other
damping configurations to be considered, in particular one in which the cross-dampings
are equal. For this, it is seen that for damping ratios of the order of 10 or 20 per cent there
is considerable scope for choosing a set of values that is stabilizing. However, for very
small values, say of the order of 1 per cent, there would be virtually only one value of
damping ratio given the other two; in fact, the variation on this value to maintain stability
would again be about 1 per cent.
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Afic:TpalCT-I1CCJIeJJ.yeTcli '1aCTHali <!>opMa JJ.eMH<!>HpoBaHHlI, KOTOplUl BCerJJ.a HMeeT cTa6HJIH3al.\HOHHOe
BJIHlIHHe JJ.!I1I HeKoHcepBaTHBHoA CHCTeMbI. YKa3aHO, 'ITO JJ.JIli O'leHb MaJIOrO JJ.eMH<!>HpOBaHI111, KpHTH'IeCKOe
3Ha'leHHe rJIaBHOrO napaMeTpa JJ.JIli 3anOlKJJ.alOwerOCli <!>JIaTTepa CBOJJ.HTCli K TaKoMy lKe JJ.JIli He3aTyxa­
IOweA CHCTeMbI.

):{JIli caMoro 60JIee npocToro CJI'Iali JJ.JIli XByX CTeneHeA cBo6oJJ.bl, HCCJIeJJ.yeTclI JJ.Hana30H <!>OPM JJ.eMH<!>­
HpOBaHHlI, KOTopble o6ecne'lHBalOT YCToA'IHBOCTb.


